ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
A. C. Uggenti, G. F. Nallo, A. Carpignano, N. Pedroni, R. Zanino
Fusion Science and Technology | Volume 78 | Number 3 | April 2022 | Pages 186-198
Technical Paper | doi.org/10.1080/15361055.2021.1984720
Articles are hosted by Taylor and Francis Online.
A preliminary but systematic safety analysis of a liquid metal divertor (LMD) for the EU DEMO performed by means of the Functional Failure Mode and Effect Analysis (FFMEA) is presented. This methodology is suitable for the analysis of the LMD, which is undergoing preconceptual design. In fact, the FFMEA compensates for the lack of detailed design information by postulating the loss of a system function, rather than a specific component failure.
The implementation of the FFMEA led to a better understanding of the safety and operational issues associated with the system and to the identification of a list of postulated initiating events (PIEs), i.e., the most challenging conditions for the plant. The PIEs, together with their possible consequences, represent an input for future quantitative safety analyses. Due to the early design stage of the LMD and the iterative nature of the methodology, this list will evolve alongside the design detail and with improvements in the understanding of phenomena driving reactor behavior.
The study highlighted some safety-relevant issues, e.g., those related to materials compatibility and system modularity, to be addressed in the perspective of a safety-driven design evolution.