ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Wenjun Yang, Guoqiang Li, Xueyu Gong, Xiang Gao, Xiaoe Li, Hang Li, Songlin Liu
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 164-173
Technical Paper | doi.org/10.1080/15361055.2021.1969064
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, aiming to bridge the gaps between ITER and future fusion power plants. In addition to the temperature dependence, the cross section also depends on the spin states of the reactant nuclei. In this paper, we calculate the neutron source and neutron wall loading (NWL) distributions and investigate the effect of spin polarization on them. For the two unpolarized scenarios at the CFETR, the neutron source distributions have obvious differences, but the poloidal distributions of the NWL have a similar tendency and are just a little different except near the outboard midplane. For the hybrid mode scenario, the maximum of the NWL is near the outboard midplane. However, for the full parallel or antiparallel polarization, the NWL distributions have a big difference in the poloidal direction, and the maximum of the NWL occurs in the upper region of the first wall. The calculation results show that it is possible to optimize blanket design by using polarized fuels at the CFETR, and then increase the working life of the first wall.