ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
Colin Weaver, Gary Cooper, Christopher Perfetti, David Ampleford, Gordon Chandler, Patrick Knapp, Michael Mangan, Jedediah Styron
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 119-133
Technical Paper | doi.org/10.1080/15361055.2021.1961540
Articles are hosted by Taylor and Francis Online.
A forward analytic model is required to rapidly simulate the neutron time-of-flight (nToF) signals that result from magnetized liner inertial fusion (MagLIF) experiments at Sandia’s Z Pulsed Power Facility. Various experimental parameters, such as the burn-weighted fuel-ion temperature and liner areal density, determine the shape of the nToF signal and are important for characterizing any given MagLIF experiment. Extracting these parameters from measured nToF signals requires an appropriate analytic model that includes the primary deuterium-deuterium neutron peak, once-scattered neutrons in the beryllium liner of the MagLIF target, and direct beamline attenuation. Mathematical expressions for this model were derived from the general-geometry time- and energy-dependent neutron transport equation with anisotropic scattering. Assumptions consistent with the time-of-flight technique were used to simplify this linear Boltzmann transport equation into a more tractable form. Models of the uncollided and once-collided neutron scalar fluxes were developed for one of the five nToF detector locations at the Z-Machine. Numerical results from these models were produced for a representative MagLIF problem and found to be in good agreement with similar neutron transport simulations. Twenty experimental MagLIF data sets were analyzed using the forward models, which were determined to only be significantly sensitive to the ion temperature. The results of this work were also found to agree with values obtained separately using a zero scatter analytic model and a high-fidelity Monte Carlo simulation. Inherent difficulties in this and similar techniques are identified, and a new approach forward is suggested.