ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dingqing Guo, Chao Chen, Zhen Wang, Jian Lin, Bing Zhang, Daochuan Ge, Zhibin Chen
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 103-110
Technical Paper | doi.org/10.1080/15361055.2021.1960089
Articles are hosted by Taylor and Francis Online.
The fusion reactor fueled by deuterium and tritium will generate many neutron activation products, causing occupational exposure and radiation risk. The minimization of occupational radiation exposure (ORE) is one of the safety goals for fusion reactors. However, detailed designs and management schemes are still lacking for fusion reactors, and the ORE evaluations are still well simplified. In this paper, an integrated assessment approach is proposed for fusion reactors at the conceptual or detailed design stage. The core idea is to estimate the ORE by referring to the dose rates and work efforts of mature fission reactors and ITER and modifying the data of these similar systems by a proportional coefficient according to the differences of component scale, operating environment, etc. The results showed that water cooling fusion reactors will generate the highest collective dose of 2635 p-mSv/year, while the PbLi cooling ones come next with about 1684 p-mSv/year and the helium cooling ones are the least. This method will contribute to fusion reactor design, operation, and maintenance optimization at the earlier stages and provide guidance to reduce the overall potential ORE to workers.