ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
A. Terakado, Y. Koide, M. Yoshida, T. Nakano, H. Homma, N. Oyama
Fusion Science and Technology | Volume 78 | Number 2 | February 2022 | Pages 89-95
Technical Paper | doi.org/10.1080/15361055.2021.1951529
Articles are hosted by Taylor and Francis Online.
Heat-resistant in-vessel components, i.e., a heat sink, a front-end optics housing, and a diagnostic window have been designed in terms of heat-handling capability and thermal stress and mechanical stress by using a finite element method code. The heat sink, which is exposed to a plasma heat flux of up to 0.3 MW/m2, consists of carbon tiles, a carbon sheet, and a stainless steel heat sink with a water-cooling channel. Analysis shows that at a water flow rate of 0.9 kg/s with a water pressure of 0.5 MPa, an increase in the carbon tile temperature is mitigated below the limit related with detrimental red-hot (900°C). The front-end optics housing temperature and the diagnostic window of sapphire glass temperature are within the allowable temperature. The thermal stress and mechanical stress are less than the allowable value, respectively.