ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Lynne A. Goodwin, Derek W. Schmidt, Lindsey Kuettner, Brian M. Patterson, Ethan Walker, Alex Edgar, Tana Morrow, Cayleigh McCreight, Jonathan A. Harris, Hans Herrmann, Brett Scheiner, Mark J. Schmitt
Fusion Science and Technology | Volume 78 | Number 1 | January 2022 | Pages 66-75
Technical Paper | doi.org/10.1080/15361055.2021.1956278
Articles are hosted by Taylor and Francis Online.
Low-density polymer foams of varying sizes, shapes, and densities are of specific interest to the inertial confinement fusion (ICF) program and related high-energy density plasma physics research. Historically, these foams are comprised of polystyrene or other low atomic number materials and have densities in the 30 to 300 mg/cm3 range. However, at the lower end of this density range, these traditional polymer foams become fragile and difficult to cast and machine into the geometries needed. Recently, the need by experimentalists for materials with densities below 30 mg/cm3 has increased. To address these needs, we are developing three-dimensional (3-D) printing techniques to create high-precision, low-density, and repeatable complex lattice structures. Using two-photon polymerization 3-D printing, we recently developed the first 5 mg/cm3 low-density lattice structure having an annular hemispherical shape. These microscale to mesoscale structures were modeled and designed using the nTopology software, specifically utilizing the “Voronoi volume lattice” and “random points in body” option blocks. All printing operations were performed using the Nanoscribe Photonic Professional GT instrument. Characterization of these 3-D structures was conducted using various microscopic and X-ray tomographic imaging techniques. Overall printed part sizes ranged from 1 to 5 mm in diameter and were composed of lattice ligaments having thicknesses in the 3- to 5-µm range. These structures have been incorporated into ICF targets recently shot on both the University of Rochester’s Laboratory of Laser Energetics Omega laser and the National Ignition Facility.