ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Boris V. Ivanov, V. S. Pantuev, A. N. Bukin, A. A. Semenov, M. I. Belyakov, A. I. Belesev, E. V. Geraskin, N. A. Ionov, V. I. Parfenov
Fusion Science and Technology | Volume 78 | Number 1 | January 2022 | Pages 44-55
Technical Paper | doi.org/10.1080/15361055.2021.1951533
Articles are hosted by Taylor and Francis Online.
This paper describes the methods and presents the results of the “Troitsk Nu-mass” experiment spectrometer cleanup after the in\ner volume (40 m3) and surfaces (160 m2) were contaminated by 5.2 GBq of tritium. The Troitsk Nu-mass experiment of the Institute for Nuclear Research of the Russian Academy of Sciences (Moscow) is designed to measure the spectrum of electrons from tritium decays in order to search for hypothetical particles—sterile neutrinos. Due to some equipment failures, the spectrometer internal volume was contaminated with tritium. The contamination made measurements impossible, and the research program stopped. Different methods were used for cleanup: vacuum extraction, hydrogen soaks, and water vapor soaks. As a result of detritiation, the background level of the main detector of the Troitsk Nu-mass spectrometer was reduced approximately by more than ten times, which made it possible to resume work. The results are consistent with the literature data obtained earlier for normal conditions in the air and can be used for detritiation of similar installations.