ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
E. G. Lindquist, T. E. Gebhart, D. Elliott, E. W. Garren, Z. He, N. Kafle, C. D. Smith, C. E. Thomas, S. J. Zinkle, T. M. Biewer
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 921-927
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1909989
Articles are hosted by Taylor and Francis Online.
An electrothermal-arc plasma source (ET-Arc) has been developed to produce transient plasma heat and particle fluxes similar to those produced by edge localized modes onto divertor plasma-facing components in tokamaks. The ET-Arc utilizes a capacitive discharge to send current through a 4-mm-diameter, 9-cm-long capillary source liner. The liner material is ablated to form a high-velocity plasma jet that impacts the target downstream. With the current discharge circuit configuration, pulse lengths are 1 to 2 ms in duration and deliver heat fluxes of 0.25 to 2.1 GW m−2. The plasma was previously characterized with optical emission spectroscopy (OES) on helium emission lines. The He I line ratios were interpreted with collisional radiative analysis to calculate ne and Te. The electron temperature and electron density ranged from Te = 1 to 5 eV and ne = 1022 to 1028 electrons/m3, respectively.
Recently, the vacuum configuration and target of the ET-Arc device were modified to allow greater diagnostic access for plasma-material interaction (PMI) studies and diagnostic development. The diagnostic suite included two Tektronix high-voltage probes to measure the capacitor and discharge potentials, a discharge current monitor, Edgertronic SC1 high-speed cameras to image the discharge, and a FLIR SC4000 infrared camera to estimate heat flux on the target. The system used OES for plasma characterization, but a new Thomson scattering (TS) diagnostic has been implemented. This system is an Advanced Research Projects Agency - Energy (ARPA-E)-funded, portable diagnostic package for spectroscopic measurements of ne, Te, ni, Ti,, and vi, which includes both TS and OES. Additionally, a novel digital holography (DH) surface-imaging diagnostic was implemented to measure erosion rates in situ. Results from ex situ DH characterization of stainless steel targets exposed to the ET-Arc source indicated that surface erosion of ~150 nm per shot occurred and an in situ DH characterization of similar targets was planned. The arc-triggering system will be revised and optimized to better synchronize with the laser diagnostics. Details of the reconfigured ET-Arc source are reported here.