ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
A. G. Ghiozzi, D. A. Velez, T. E. Gebhart, M. L. Gehrig, M. N. Ericson, L. R. Baylor, D. A. Rasmussen
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 915-920
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1906149
Articles are hosted by Taylor and Francis Online.
One technique for mitigating disruptions in a tokamak is shattered pellet injection (SPI). SPI is a process in which a large solid pellet consisting of deuterium, neon, or argon is desublimated in a pipe gun barsrel and launched downstream. Pellets are shattered just before entering the plasma by an impact with an angled tube. Injection of these materials into the plasma radiates stored thermal energy, limits current decay rates, suppresses the generation of runaway electrons, and dissipates runaway electrons if necessary. A critical element of the SPI system is a fast-acting valve that releases high-pressure gas to dislodge and accelerate pellets directly, or indirectly via a mechanical punch. A prototype valve sized for the ITER SPI system has been designed and fabricated. A pulsed high-voltage power supply energizes the valve’s internal magnetic coil, which induces eddy currents in the adjacent flyer plate resulting in a repulsive force between the flyer plate and the coil. The flyer plate action lifts a valve seat, allowing high-pressure gas to flow from the valve plenum to the downstream (breech) location of the pellet or mechanical punch. All of the valve’s internal components are designed to operate in ITER-level static background magnetic fields.
A study was conducted to optimize the downstream pressure response for a range of valve sizes and operating pressures. In particular, the study analyzes the breech pressure response associated with varying plenum pressures as well as varying breech volumes. A computational fluid dynamics simulation was built in STAR-CCM+ and validated against data from laboratory experiments. The resulting simulation outputs, in the form of downstream responses for a variety of initial plenum pressures and breech volumes, will be used as a complement to experimental data to ensure the pressure pulse is suitable for pellet survivability. These data, combined with studies on pellet shear strength and shock response, will be applied to optimization of overall operating parameters of the ITER SPI system.