ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Monica Gehrig, Joshua Schlegel, Dennis Youchison, Arnold Lumsdaine, Charles Kessel, Gary Mueller
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 883-893
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1887717
Articles are hosted by Taylor and Francis Online.
A helium flow loop is being assembled at Oak Ridge National Laboratory to analyze heat transfer enhancement for systems such as blanket and divertor components. To efficiently identify optimum geometries for heat transfer enhancement in these applications, simulation work is performed to optimize test section designs that are built and tested in the helium flow loop that operates at 4 MPa and a mass flow rate of 100 g/s. Different ribbed geometries that examine rib shape, rib height, rib orientation, rib spacing, and three-dimensional orientation are modeled and simulated in STAR-CCM+ to compare their ability to remove heat and mitigate pressure drop. Following the simulations, models are selected and manufactured for the helium flow loop tests. Simulations initially focus on a hydrodynamic study to determine the appropriate mesh and physics models and then add a heat flux to analyze the heat transfer abilities of the models. The simulations are run in steady state and use a Reynolds-averaged Navier-Stokes k-ε turbulence model. The helium is modeled as an ideal gas. The simulation explores models of geometries that enhance the heat transfer and decrease pressure drop with an overall goal of increasing fluid collision with the wall. Enhanced geometries are simulated to select appropriate designs for manufacturing, and preliminary experimental results are used to validate the simulations. The factors that are being analyzed in the comparison between the experimental and the simulated results include matching thermocouple temperatures, pressure drop, roughness, and fluid velocity.