ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Energy Secretary to speak at the 2025 ANS Winter Conference & Expo
In less than two weeks, the American Nuclear Society’s second annual conference of the year, the 2025 ANS Winter Conference & Expo, will come to Washington, D.C.
Today, ANS is announcing that Energy Secretary Chris Wright will be joining the list of nuclear leaders slated to speak at the conference.
Click here to register for the meeting, which will take place November 9–12 in Washington, D.C., at the Washington Hilton. Be sure to do so before November 7 to take advantage of priority pricing.
D. S. Lee, S. A. Musa, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 875-882
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1920783
Articles are hosted by Taylor and Francis Online.
Our group has recently developed and studied “finger”-type divertors that are a simplified version of the helium-cooled modular divertor with multiple jets (HEMJ) using coupled computational fluid dynamics and thermal stress simulations. Such a simplified geometry could reduce complexity and cost given the large number of fingers required to cover the total divertor target area. Previous experimental studies for this simplified flat design reported lower heat transfer coefficients and higher pressure drops than the HEMJ, contrary to numerical predictions. Subsequent measurements determined that the original test section had significant dimensional variations in the jet exit holes. A new test section was therefore manufactured and tested in the Georgia Tech (GT) helium loop. The experimental results presented here for this test section at maximum heat flux of 7.1 MW/m2 are in good agreement with numerical predictions. Correlations developed from these experimental data are extrapolated to predict the maximum heat flux that can be accommodated by the flat design and the coolant pumping power requirements under prototypical conditions. Finally, numerical simulations are used to estimate the sensitivity of the flat design to geometric variations typical of manufacturing tolerances and variations in the gap width.