ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. S. Lee, S. A. Musa, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 875-882
Student Paper Competition Selection | doi.org/10.1080/15361055.2021.1920783
Articles are hosted by Taylor and Francis Online.
Our group has recently developed and studied “finger”-type divertors that are a simplified version of the helium-cooled modular divertor with multiple jets (HEMJ) using coupled computational fluid dynamics and thermal stress simulations. Such a simplified geometry could reduce complexity and cost given the large number of fingers required to cover the total divertor target area. Previous experimental studies for this simplified flat design reported lower heat transfer coefficients and higher pressure drops than the HEMJ, contrary to numerical predictions. Subsequent measurements determined that the original test section had significant dimensional variations in the jet exit holes. A new test section was therefore manufactured and tested in the Georgia Tech (GT) helium loop. The experimental results presented here for this test section at maximum heat flux of 7.1 MW/m2 are in good agreement with numerical predictions. Correlations developed from these experimental data are extrapolated to predict the maximum heat flux that can be accommodated by the flat design and the coolant pumping power requirements under prototypical conditions. Finally, numerical simulations are used to estimate the sensitivity of the flat design to geometric variations typical of manufacturing tolerances and variations in the gap width.