ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
S. A. Musa, D. S. Lee, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 858-864
Student Paper Competition Selection | doi.org/10.1080/15361055.2020.1867475
Articles are hosted by Taylor and Francis Online.
A single-finger unit of the Helium-Cooled Modular Divertor with Multiple Jets (HEMJ) with a plasma-facing surface (PFS) area of about 2 cm2 has been studied in a helium (He) loop at He mass flow rates ≤ 8 g/s and nearly prototypical conditions. Based on previous studies of the single finger of the HEMJ, our Georgia Institute of Technology group is planning to experimentally study larger divertors. Given that the HEMJ test section was heated with an induction heater and that it is impractical to scale this up to divertors with larger PFS areas, a reversed heat flux approach is being considered to measure heat transfer coefficients (HTCs). In this approach, the direction of the heat flux is reversed with water cooling and high-temperature He heating of the outer shell attached to the PFS.
This work presents an initial experimental and numerical evaluation of this approach for a single HEMJ finger. Experiments with brass and copper-chromium-zirconium outer shells were conducted at dimensionless He mass flow rates or Reynolds numbers Re = 1 × 104 to 4.7 × 104, an inlet pressure of 10 MPa, temperatures as great as 673 K, and maximum heat flux of 8.4 MW/m2. The experiments verify that the He-side HTCs are independent of the direction of the heat flux. The results agree well with previous Nusselt number correlation and pressure loss coefficients for the HEMJ obtained using the normal heating approach.