ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Makoto Oyaidzu, Masayuki Ohta, Kentaro Ochiai, Atsushi Kasugai
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 842-847
Technical Paper | doi.org/10.1080/15361055.2021.1962119
Articles are hosted by Taylor and Francis Online.
In the Advanced Fusion Neutron Source (A-FNS), an accelerator-driven fusion-relevant neutron source that is planned for development in Japan, a few grams (3.5 g at full power operation) of tritium will be generated every year, mainly in the lithium target system. Since the generated tritium would migrate out of the lithium target system, it is necessary to estimate the tritium migration into and out of the lithium target system for the design of detritiation systems for the A-FNS. Therefore, a preliminary estimation is performed in the present study. As a result, it is found that almost all of the generated tritium in the lithium target system would be trapped in the impurity removal system, while less than 0.5% would migrate out. It is also indicated that the amount of tritium that would migrate out of the lithium target system would be able to be processed with the existing techniques so far.