ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Victoria Hypes-Mayfield, William Kubic, David Dogruel, Kirk Hollis, Scott Willms, Joseph H. Dumont
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 836-841
Technical Paper | doi.org/10.1080/15361055.2021.1883978
Articles are hosted by Taylor and Francis Online.
Uranium hydride is commonly used to store hydrogen or its isotopes in a solid state. The Self-Assaying Tritium Accountancy and Containment Unit for ITER (STACI) is a 5.2-kg bed of depleted uranium (dU) capable of holding up to 33 mol of hydrogen or its isotopes. This paper is a summary of data analysis of past experimental campaigns with STACI, with the aim of describing the kinetics and thermodynamics of the hydriding process. Computed tomography imaging was performed on STACI both before and after its experimental campaign, and a high degree of swelling was observed in the dU. Literature on studies in regard to the swelling of large (multikilogram) quantities of uranium hydride for storage applications was not identified during this study. Data from the experimental campaign, as well as data on the formation reaction, are presented. The authors hope to create an analytical model of STACI based on these data.