ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tim D. Bohm, Mohamed E. Sawan
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 813-828
Technical Paper | doi.org/10.1080/15361055.2021.1908783
Articles are hosted by Taylor and Francis Online.
In the design of fusion reactors, determining radiation levels due to neutrons and photons (gammas) throughout the reactor and its surroundings is important. Radiation transport codes need to have accurate cross-section libraries in order to produce accurate results. The Fusion Evaluated Nuclear Data Library (FENDL) is an international effort coordinated by the International Atomic Energy Agency, Nuclear Data Section, that assembles a collection of the best nuclear data for fusion applications. In the current FENDL-3.1d data library, neutron cross sections for 65 of the 180 isotopes present in the library come from ENDF/B-VII.1.
Monte Carlo–based neutronics calculations using cross-section libraries from FENDL (versions 2.1 and 3.1d), ENDF/B (versions VII.1 and VIII.0), and candidate new evaluations for key structural elements/isotopes such as iron and chromium were performed. The calculations were performed in reactor-relevant models including a one-dimensional (1-D) cylindrical model of ITER, a three-dimensional (3-D) computer-aided design (CAD)–based model of ITER, and a 3-D CAD-based model of the U.S. Fusion Energy System Studies Fusion Nuclear Science Facility (FNSF).
The results show that neutron fluxes calculated with different cross-section libraries can be as much as 12% higher and as much as 8% lower than those calculated with the reference cross-section library (FENDL-2.1). Nuclear heating calculated with different cross-section libraries can be as much as 14% higher and as much as 8% lower than those calculated with the reference cross-section library. Iron displacements per atom calculated with different cross-section libraries can be as much as 9% higher and as much as 9% lower than those calculated with the reference cross-section library. Helium production calculated with different cross-section libraries can be as much as 19% higher and as much as 2% lower than those calculated with the reference cross-section library. Tritium production in the ITER 1-D model’s nonbreeding regions calculated with different cross-section libraries can be as much as 246% higher and as much as 5% lower than those calculated with the reference cross-section library. The tritium breeding ratio in the FNSF 3-D model calculated with different cross-section libraries averaged 1% higher at the inboard and 1.4% higher at the outboard than those calculated with the reference cross-section library.