ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ander Gray, Andrew Davis, Edoardo Patelli
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 802-812
Technical Paper | doi.org/10.1080/15361055.2021.1895667
Articles are hosted by Taylor and Francis Online.
In this paper we perform nuclear data uncertain propagation with Total Monte Carlo, where the transport simulation is repeated for random evaluations of the data. The Oktavian Iron, Oktavian Nickel, and the Frascati Neutron Generator (FNG) neutron streaming SINBAD benchmarks were evaluated with OpenMC. Gaussian random deviates were drawn from the ENDF/B-VII.1 and TENDL-2017 libraries where the covariances were available. Uncertainty from multiple nuclides was propagated simultaneously assuming inter-nuclide independence. When the individual statistical uncertainty is negligible compared to the data uncertainty, then standard probability theory may be applied. If this is not the case and both need to be considered, we use Imprecise Probabilities (IP) to perform further analysis. We show how uncertain experimental data may be compared to uncertain simulation in the context of IP, and show how an uncertainty-based sensitivity analysis can be performed with IP.