ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Meschini, M. Zucchetti, Enrico Pagliuca
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 784-790
Technical Paper | doi.org/10.1080/15361055.2021.1921461
Articles are hosted by Taylor and Francis Online.
As a first step to exploring the possibilities of D-3He plasmas, a deuterium-tritium burning plasma experiment at high field and plasma densities, which can be much closer to the required parameters than present-day experiments, is particularly attractive. Compact high-field experiments were the first to be proposed in order to achieve fusion ignition conditions based on existing technology and the known properties of high-density plasmas. In previous studies, a feasibility study of a high-field D-3He experiment of larger dimensions and higher fusion power than Ignitor, but based on Ignitor technologies, was brought to the proposed Candor fusion experiment. Unlike Ignitor, Candor would operate with values of poloidal beta around unity and the central part of the plasma column in the second stability region. The toroidal field coils are divided into two sets of coils, and the central solenoid (air core transformer) is placed between them in the inboard part. In this paper, a revised design of Candor is proposed, based on the new technologies. This tokamak is capable of reaching D-3He ignition on the basis of existing technologies and knowledge of plasma, without any optimistic extrapolation.