ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
S. Meschini, M. Zucchetti, Enrico Pagliuca
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 784-790
Technical Paper | doi.org/10.1080/15361055.2021.1921461
Articles are hosted by Taylor and Francis Online.
As a first step to exploring the possibilities of D-3He plasmas, a deuterium-tritium burning plasma experiment at high field and plasma densities, which can be much closer to the required parameters than present-day experiments, is particularly attractive. Compact high-field experiments were the first to be proposed in order to achieve fusion ignition conditions based on existing technology and the known properties of high-density plasmas. In previous studies, a feasibility study of a high-field D-3He experiment of larger dimensions and higher fusion power than Ignitor, but based on Ignitor technologies, was brought to the proposed Candor fusion experiment. Unlike Ignitor, Candor would operate with values of poloidal beta around unity and the central part of the plasma column in the second stability region. The toroidal field coils are divided into two sets of coils, and the central solenoid (air core transformer) is placed between them in the inboard part. In this paper, a revised design of Candor is proposed, based on the new technologies. This tokamak is capable of reaching D-3He ignition on the basis of existing technologies and knowledge of plasma, without any optimistic extrapolation.