ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. Leichtle, U. Fischer, C. Bachmann
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 773-783
Technical Paper | doi.org/10.1080/15361055.2021.1887716
Articles are hosted by Taylor and Francis Online.
One of the main aims of the European fusion programme is the design of a DEMOnstration fusion power plant (DEMO). The related work is conducted by the EUROfusion consortium and includes a strong supporting research and development programme. Support is also provided to the design of the high intense neutron source IFMIF-DONES (International Fusion Material Irradiation Facility-DEMO Oriented NEutron Source) to be built for the qualification of materials considered for DEMO. Neutronics plays a fundamental role for the design, operation, and safety of these facilities including the evaluation and verification of their nuclear performance.
The lessons learned during the ITER design and construction phase point to the need to strengthen nuclear design integration already in the early DEMO design phase and establish an improved nuclear safety culture. This requires a coordinated approach for the neutronics that relies upon the availability of suitable computational procedures, tools, and data, qualified and validated for specific design- and safety-related applications. Accordingly, the approach builds on the development of advanced computation tools and the provision of high-quality nuclear data supported by integral experiments for their validation. Furthermore, configuration and requirement management principles ensure the alignment with the global nuclear design integration. This translates into appropriately chosen design margins and acceptance criteria, along with the specification of the nuclear analyses to be conducted in the various design phases.
This paper presents the outlined approach as implemented in the EUROfusion Power Plant Physics and Technology (PPPT) programme and provides a strategical outlook of planned activities. This includes development works on advanced simulation tools with their application in various nuclear design- and safety-related analyses. The efforts to improve the nuclear database, in particular, with regard to radiation damage and activation cross-section data relevant to DEMO and DONES, are highlighted. Furthermore, the methodological approach applied to PPPT nuclear analyses including design, shielding, activation, and radiation dose calculations is discussed on the basis of specific examples.