ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. Leichtle, U. Fischer, C. Bachmann
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 773-783
Technical Paper | doi.org/10.1080/15361055.2021.1887716
Articles are hosted by Taylor and Francis Online.
One of the main aims of the European fusion programme is the design of a DEMOnstration fusion power plant (DEMO). The related work is conducted by the EUROfusion consortium and includes a strong supporting research and development programme. Support is also provided to the design of the high intense neutron source IFMIF-DONES (International Fusion Material Irradiation Facility-DEMO Oriented NEutron Source) to be built for the qualification of materials considered for DEMO. Neutronics plays a fundamental role for the design, operation, and safety of these facilities including the evaluation and verification of their nuclear performance.
The lessons learned during the ITER design and construction phase point to the need to strengthen nuclear design integration already in the early DEMO design phase and establish an improved nuclear safety culture. This requires a coordinated approach for the neutronics that relies upon the availability of suitable computational procedures, tools, and data, qualified and validated for specific design- and safety-related applications. Accordingly, the approach builds on the development of advanced computation tools and the provision of high-quality nuclear data supported by integral experiments for their validation. Furthermore, configuration and requirement management principles ensure the alignment with the global nuclear design integration. This translates into appropriately chosen design margins and acceptance criteria, along with the specification of the nuclear analyses to be conducted in the various design phases.
This paper presents the outlined approach as implemented in the EUROfusion Power Plant Physics and Technology (PPPT) programme and provides a strategical outlook of planned activities. This includes development works on advanced simulation tools with their application in various nuclear design- and safety-related analyses. The efforts to improve the nuclear database, in particular, with regard to radiation damage and activation cross-section data relevant to DEMO and DONES, are highlighted. Furthermore, the methodological approach applied to PPPT nuclear analyses including design, shielding, activation, and radiation dose calculations is discussed on the basis of specific examples.