ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Sergey Smolentsev, Tyler Rhodes, Yuchen Jiang, Peter Huang, Charles Kessel
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 745-760
Technical Paper | doi.org/10.1080/15361055.2021.1906134
Articles are hosted by Taylor and Francis Online.
At present, the U.S. Fusion Engineering Systems Study (FESS) considers several cooling/breeding concepts that utilize flowing liquid metals (LMs), Li, or eutectic PbLi alloy as working fluids for implementation of these concepts in the Fusion Nuclear Science Facility (FNSF). In this paper, we review recent modeling activities aimed at the investigation of LM flows and heat transfer relevant to the FESS-FNSF program. In particular, considerations are given to (1) development and validation & verification of computational magnetohydrodynamic (MHD) codes, (2) characterization of critical coupled MHD/heat transfer phenomena, and (3) design and analysis for selected LM applications in the FNSF. Under these three research thrusts, the reviewed topics including the MHD code HyPerComp Incompressible MHD solver for Arbitrary Geometries (HIMAG), MHD mixed-convection flows, MHD pressure drop in the blanket inlet/outlet manifolds, PbLi flows in a thermal convection loop, MHD PbLi flows in a dual-coolant lead-lithium blanket prototype, and a design window for a flowing Li divertor with He-cooled substrate.