ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
T. E. Gebhart, A. G. Ghiozzi, D. A. Velez, L. R. Baylor, C. Chilen, S. J. Meitner
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 721-727
Technical Paper | doi.org/10.1080/15361055.2021.1874766
Articles are hosted by Taylor and Francis Online.
Shattered pellet injection (SPI) has been chosen as the baseline disruption mitigation system on ITER due to its ability to rapidly inject material deep into the plasma to greatly increase the plasma density and radiate the thermal energy. SPI utilizes a mechanical punch or high-pressure gas to release and accelerate a pellet that has been cryogenically desublimated in the barrel of a pipe gun. Various material injection combinations could possibly be implemented during different phases of a disruption event to radiate plasma energy, reduce electromagnetic loads on machine components, avoid the formation of runaway electrons, or to dissipate runaway electrons that form. Each injection phase could possibly utilize combinations of deuterium, neon, or argon.
In this paper we outline experimental measurements of pellet material shear strength at SPI operating temperatures to understand the force needed to release SPI pellets. Deuterium, neon, argon, and deuterium-neon mixture pellets with diameters of 8.5, 12.5, and 15.7 mm are formed at a range of relevant gas pressures and temperatures and dislodged from the cold zone with a slow-moving piston driven by a motor. The slow-moving piston is kept above the triple point temperature of the material while the pellet is forming, then cooled to below the triple point temperature before contacting the pellet to minimize any thermal conduction to the pellet. The piston incorporates a load cell to measure the force applied when the pellet breaks away from the cold zone in the barrel.
The ability of the gas and punch methods to exceed the shear strength of the studied pellet materials for release has been analyzed.
High-pressure gas delivered by fast-opening valves produce pressure shock to the pellet due to supersonic expansion of the propellant gas. Pressure (and therefore, force) oscillations are present due to transverse density propagation throughout the breech volume. Mechanical punches deliver an impact force through a high-kinetic energy impact. The effect of the mechanical shock on the pellet has been explored and is presented in this paper. Scaling to larger ITER-size SPI pellets will be described.