ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Cody S. Wiggins, Arturo Cabral, Lane B. Carasik
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 710-715
Technical Paper | doi.org/10.1080/15361055.2021.1898304
Articles are hosted by Taylor and Francis Online.
Development and optimization of the plasma-facing components for the fusion reactors ITER and DEMO are necessary for sufficient heat removal because of the high heat fluxes in these systems. In this work, we consider the heat transfer performance of the Cu-Cr-Zr alloy tube with a swirl (twisted tape) insert within a monoblock divertor experiencing cyclic thermal loading expected during ITER operating conditions. Thermal loading is examined up to 2000 cycles, leading to increased tube surface roughness and decreased tube thermal conductivity. A simplified model of thermal-hydraulic performance is used that accounts for forced convection in the swirled flow, conduction through the Cu-Cr-Zr tube, and tube fouling (surface roughness and thermal conductivity changes). From our work, it is found that the overall heat transfer rate of the tube is enhanced with increased thermal loading over a wide range of Reynolds numbers (i.e., flow rates). This is due to the increase of convective heat transfer from turbulence enhancement induced by increasing surface roughness. However, the increase in surface roughness also leads to an increase in pressure losses in the system, requiring increased pumping power to maintain flow rates. We consider the heat transfer rate at equivalent pumping power (quantified by the overall enhancement ratio) and find it has a complicated dependence on Reynolds number and the number of thermal loading cycles. In particular, we see that for a Reynolds number of 1 000 000, the overall enhancement ratio is decreased by up to 9% at 2000 loading cycles. Such a decrease could meaningfully impact the operations of ITER or DEMO, requiring additional pumping input to maintain sufficient heat removal. This suggests the need for further investigation of the thermal-hydraulic performance of plasma-facing components, including the full monoblock assembly, after many loading cycles.