ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dennis Youchison, James Klett, Brian Williams, Douglas Wolfe
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 692-698
Technical Paper | doi.org/10.1080/15361055.2020.1866945
Articles are hosted by Taylor and Francis Online.
Tungsten (W)–armored graphitic foam monoblocks were developed for applications requiring high-Z plasma-facing material in long-pulse fusion experiments and ultimately deuterium-tritium fusion reactors. The monoblocks are an integrated material system combining the advantages of a chemical vapor deposited (CVD) W coating with a high-conductivity graphitic foam. The W is a high-melting-point, high-Z material with low tritium retention. The graphitic foam coupled to a swirl tube serves as a high-thermal-conductivity heat sink that cannot melt, although it can sublime at much higher temperatures than copper melts. Together, they comprise a robust plasma-facing component (PFC) weighing roughly 5% of an all-W component or 17% of a traditional W-coated copper heat sink.
A single-channel mock-up consisting of four graphitic foam monoblocks equipped with a water-cooled swirl tube was fabricated for eventual testing in the 60-kW, EB-60, rastered electron beam at the Applied Research Laboratory of The Pennsylvania State University. Two monoblocks have a thin 50-μm-thick coating of pure W chemically vapor deposited over NbC and pure Nb interlayers. Two others have a 2-mm-thick pure W coating CVD on graphitic monoblocks using the same interlayers. The mock-up will be cooled with available 10 m/s, 0.7 MPa water with a 22°C inlet temperature and subjected to varying uniform heat loads up to 20 MW/m2. It is equipped with type-K thermocouples at various depths, and calibrated infrared thermography and spot pyrometry will be used to characterize the heated surface. Real-time water calorimetry will be used to ascertain the absorbed steady-state power and infer the heat flux during testing.
Since testing cannot be done under prototypic divertor flow conditions, it is necessary to predict the thermal response of this novel PFC system and investigate the power sharing between radiation and convection at divertor heat flux levels and its inherent ability to avoid critical heat flux. Results are reported for predictions obtained from computational fluid dynamics models up to 30 MW/m2 of steady-state uniform heat flux. Leading-edge heat loads of 30 MW/m2 on a 2-mm-wide side strip were also investigated to ascertain if coating delamination is likely.