ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Dennis Youchison, James Klett, Brian Williams, Douglas Wolfe
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 692-698
Technical Paper | doi.org/10.1080/15361055.2020.1866945
Articles are hosted by Taylor and Francis Online.
Tungsten (W)–armored graphitic foam monoblocks were developed for applications requiring high-Z plasma-facing material in long-pulse fusion experiments and ultimately deuterium-tritium fusion reactors. The monoblocks are an integrated material system combining the advantages of a chemical vapor deposited (CVD) W coating with a high-conductivity graphitic foam. The W is a high-melting-point, high-Z material with low tritium retention. The graphitic foam coupled to a swirl tube serves as a high-thermal-conductivity heat sink that cannot melt, although it can sublime at much higher temperatures than copper melts. Together, they comprise a robust plasma-facing component (PFC) weighing roughly 5% of an all-W component or 17% of a traditional W-coated copper heat sink.
A single-channel mock-up consisting of four graphitic foam monoblocks equipped with a water-cooled swirl tube was fabricated for eventual testing in the 60-kW, EB-60, rastered electron beam at the Applied Research Laboratory of The Pennsylvania State University. Two monoblocks have a thin 50-μm-thick coating of pure W chemically vapor deposited over NbC and pure Nb interlayers. Two others have a 2-mm-thick pure W coating CVD on graphitic monoblocks using the same interlayers. The mock-up will be cooled with available 10 m/s, 0.7 MPa water with a 22°C inlet temperature and subjected to varying uniform heat loads up to 20 MW/m2. It is equipped with type-K thermocouples at various depths, and calibrated infrared thermography and spot pyrometry will be used to characterize the heated surface. Real-time water calorimetry will be used to ascertain the absorbed steady-state power and infer the heat flux during testing.
Since testing cannot be done under prototypic divertor flow conditions, it is necessary to predict the thermal response of this novel PFC system and investigate the power sharing between radiation and convection at divertor heat flux levels and its inherent ability to avoid critical heat flux. Results are reported for predictions obtained from computational fluid dynamics models up to 30 MW/m2 of steady-state uniform heat flux. Leading-edge heat loads of 30 MW/m2 on a 2-mm-wide side strip were also investigated to ascertain if coating delamination is likely.