ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Peter Titus, A. Brooks, H. Zhang
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 676-686
Technical Paper | doi.org/10.1080/15361055.2021.1912568
Articles are hosted by Taylor and Francis Online.
The possibility of thermal strain–induced delamination was anticipated in the original design of the NSTX-Upgrade (NSTX-U). Current “bunching” at the toroidal field (TF) flag causes nonuniform Joule heating of the TF conductor during a shot. This produced through-thickness tensions beyond the measured capacity of the insulation bond. This however occurred where the torsional shear was at a minimum, and the Upgrade design progressed with the understanding that delamination at the core of the TF flag might occur. During the Recovery project design reviews, concern over the extent of delamination was elevated. In various early simulations, the tensile stresses reached 50 MPa. With more accurate through-thickness insulation modulus and thickness, and at end-of-flattop versus end-of-pulse temperature, the tensile stress goes down to 25 MPa, and possibly lower based on higher-fidelity modeling. Insulation delamination has been predicted analytically in coils in projects other than NSTX-U, and indications of delamination have been observed in some machines.
Out-of-plane loads on the NSTX TF coil produce local and global twisting of the tokamak. The inner leg supports part of the torsion as a torque shaft or tube. Peak torsion is at the outside radius of the TF central column, away from the regions that don’t carry current, experience less Joule heat, and develop tension. Testing of the shear and tensile fatigue properties of the CTD-425 system was repeated and was a part of this requalification effort.
This paper addresses simulations done in ANSYS based on a simple assumption that when the tension and shear stresses exceed an allowable, the elements are “killed” or considered much less capable of carrying tension and shear loads established by fatigue S-N tests. A competing and complementary method, the Virtual Crack Closure Technique (VCCT) was used to augment and validate the EKILL procedure. Determination of Paris constants to support the VCCT analysis is described Fig. 8.