ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
C. Rana, T. Brown, P. Titus, Y. Zhai, A. Brooks, J. E. Menard
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 647-657
Technical Paper | doi.org/10.1080/15361055.2021.1940645
Articles are hosted by Taylor and Francis Online.
A recent National Academy study recommended a next-step sustained high power density (SHPD) facility for the United States that can be a bridge to a compact fusion pilot plant. A design has been initiated to investigate a possible SHPD non-deuterium-tritium device that builds upon recent low aspect ratio tokamak studies. A 1.2-m device with a 2.4 aspect ratio has been chosen to evaluate physics performance goals within a double-null plasma machine arrangement centered on three component features: high current density toroidal field (TF) and central ohmic heating/poloidal field (PF) coils, liquid metal divertor/first wall systems, and the integration of a limited set of outboard dual-coolant lead lithium test blankets that can be maintained within a vertical maintenance approach.
The underlying initiative of the U.S. program is to promote research and technology advancements that lead to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost. High-field, higher power density will bring down the size of a fusion device and can lower the cost, but this can only occur with the development of high-current density TF and PF windings, a support system to handle the higher magnetic loads, and a cost structure that is economically viable. High-temperature superconductors (HTSs) offer the potential to meet high-field/high-current requirements and is under development by a number of institutions. Fabrication process improvement would continue to bring down the price if a market for fusion devices were to develop and the production level of HTS cable were to increase; however, this is not happening with any expedience especially related to fusion applications. At present, HTS conductors are an order of magnitude more expensive than low-temperature superconductors (LTSs), making an early application for a near-term SHPD experimental device problematic, especially for a low aspect ratio design that has minimum component space within the device inboard region. In lieu of an HTS-based, high-current density TF winding design, a moderately high-current density winding design (>80 MA/m2) based on cable-in-conduit LTS conductors in a multiwinding pack arrangement sized for low and high field was defined. This paper focuses on the design of the magnet system, with attention given to the analysis performed on the SHPD TF casing structure. The analysis is carried out for various sections: (1) Emag analysis of the SHPD structure, (2) TF casing winding pack evaluation for TF-TF self-load only with slit model and three-dimensional geometry, (3) effect of the shear pin in the TF casing structure, and (4) compression ring effect on the SHPD structure.