ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. Cai, P. Titus, C. Rana, H. Zhang, S. Sheckman
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 617-628
Technical Paper | doi.org/10.1080/15361055.2021.1921362
Articles are hosted by Taylor and Francis Online.
The National Spherical Torus eXperiment (NSTX) has undergone a major upgrade to NSTX-U at the Princeton Plasma Physics Laboratory. NSTX-U will double the toroidal field, plasma current, and neutral beam injection heating power, as well as significantly increase the pulse duration. The plasma-facing components (PFCs) in the NSTX-U vacuum vessel are mainly graphite, which has a total surface area of about 41 m2. To achieve high vacuum and reduce impurity from PFCs during operation, it is important to bake the graphite parts and remove most of the moisture absorbed by graphite during installation. Typical bakeout for NSTX-U lasts about 3 to 4 weeks. The NSTX-U inner vacuum vessel, i.e., the center stack casing, will be heated to about 450°C by passing 8 KA direct current through it during bakeout. The design of the bakeout bus directly attached to the casing flanges at vessel top and bottom are covered in detail in this paper. At the vessel top, the water-cooled bus terminal is subject to high thermal growth (about 18 mm in the vertical direction and 3 mm in the radial direction). At the vessel bottom, the bakeout bus must withstand 120 KA of halo current during disruption, as well as dislocation from thermal growth. This paper covers the design to address all these challenges. A machined CuCrZr terminal with internal water-cooling channels was used to prevent any brazing work in high stress areas. Detailed analysis will also be covered to show that the proposed design can satisfy thermal, structural, and fatigue requirements during bakeout and operation.