ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Joseph B. Tipton, Jr., Arnold Lumsdaine, Michael C. Kaufman, Juan Caneses Marin, Jason Cook, Phil Ferguson, Richard Goulding, Dean McGinnis, Juergen Rapp, MPEX Team
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 608-616
Technical Paper | doi.org/10.1080/15361055.2021.1898302
Articles are hosted by Taylor and Francis Online.
The Materials Plasma Exposure eXperiment (MPEX) has been designed as a linear plasma divertor simulator in order to address plasma material interaction (PMI) science for next-generation fusion devices. It will have the capability to test neutron irradiated samples with plasma fluxes of greater than 1024 m−2s−1. It is expected to operate steady state for up to 106 s to consider PMI affects through reactor end of life. The conceptual design of MPEX was completed in 2019, with preliminary design having begun in 2020. The plasma source for MPEX is a helicon antenna, where the energized helical antenna sits outside of the vacuum in order to minimize impurities in the plasma. It is expected to receive up to 200 kW of continuous power, and so the antenna and the window must be actively cooled. The water-cooled copper antenna has been operated at full power on the Proto-MPEX device (which is a test facility to demonstrate the plasma source and heating systems). The water-cooled window, however, is a novel component that must meet numerous competing requirements. It requires a low dielectric loss to allow the Radio Frequency (RF) power to create the plasma within the vacuum boundary. It must be structurally robust to handle the significant heat flux from the plasma and any heat from dielectric coupling. It must be compatible with the coolant (preferably water). It requires a vacuum seal that minimizes impurities into the plasma and does not compromise the structural integrity of the window. Two window designs have been tested. Results from these tests, where temperatures are measured and heat fluxes inferred from infrared camera data, have been correlated with thermal-structural simulations. When these simulations are extrapolated to the full power steady-state heat fluxes that are expected in MPEX, the designs do not appear to have the necessary structural robustness. This study explores design alternatives for the MPEX helicon antenna window, presents analysis results for several of the alternatives, and shows a viable solution that satisfies the requirements for MPEX operation.