ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
Adrian S. Sabau, Jason Cook, Adam M. Aaron, Joseph B. Tipton, Jr., Arnold Lumsdaine
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 594-607
Technical Paper | doi.org/10.1080/15361055.2021.1920785
Articles are hosted by Taylor and Francis Online.
The Material Plasma Exposure eXperiment (MPEX) steady-state linear plasma facility is currently under design at Oak Ridge National Laboratory to expose target specimens to fusion divertor regimes. The neutron-irradiated target is actively cooled and remote handled in the MPEX facility for conducting plasma-material–interaction (PMI) experiments.
In this study, the steady-state stresses in the target and target assembly system are investigated using two-dimensional (2-D) and three-dimensional (3-D) models to provide expected stresses/strains under the heat loads to which various system components would be exposed during MPEX operation.
The calculated temperatures from the 2-D axisymmetric mechanical model were found to be in excellent agreement with those from the full 3-D thermohydraulic model, providing a strong model validation. Numerical simulation results for the steady-state mechanical model indicate nonuniform distributions for the temperature, stress, and deformation within the critical components. For the initial design, the deformation results indicate possible gap openings between contacting surfaces below the plasma-facing materials. To reduce the possibility of interfacial gap opening, the target assembly was slightly changed and evaluated using the 2-D stress model. Numerical simulation results indicate that the interfacial gap openings can be minimized without drastically changing the entire target assembly. The stress-strain conditions for the target will be further used to assess the appropriate operation during MPEX experiments and gain insight into materials science phenomena during PMI.