ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Adrian S. Sabau, Jason Cook, Adam M. Aaron, Joseph B. Tipton, Jr., Arnold Lumsdaine
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 594-607
Technical Paper | doi.org/10.1080/15361055.2021.1920785
Articles are hosted by Taylor and Francis Online.
The Material Plasma Exposure eXperiment (MPEX) steady-state linear plasma facility is currently under design at Oak Ridge National Laboratory to expose target specimens to fusion divertor regimes. The neutron-irradiated target is actively cooled and remote handled in the MPEX facility for conducting plasma-material–interaction (PMI) experiments.
In this study, the steady-state stresses in the target and target assembly system are investigated using two-dimensional (2-D) and three-dimensional (3-D) models to provide expected stresses/strains under the heat loads to which various system components would be exposed during MPEX operation.
The calculated temperatures from the 2-D axisymmetric mechanical model were found to be in excellent agreement with those from the full 3-D thermohydraulic model, providing a strong model validation. Numerical simulation results for the steady-state mechanical model indicate nonuniform distributions for the temperature, stress, and deformation within the critical components. For the initial design, the deformation results indicate possible gap openings between contacting surfaces below the plasma-facing materials. To reduce the possibility of interfacial gap opening, the target assembly was slightly changed and evaluated using the 2-D stress model. Numerical simulation results indicate that the interfacial gap openings can be minimized without drastically changing the entire target assembly. The stress-strain conditions for the target will be further used to assess the appropriate operation during MPEX experiments and gain insight into materials science phenomena during PMI.