ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Aravind Shanmugasundaram, Kevin Freudenberg, Michael Kaufman, Robert L. Myatt, Kristine B. Cochran
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 582-593
Technical Paper | doi.org/10.1080/15361055.2021.1935598
Articles are hosted by Taylor and Francis Online.
The electron cyclotron heating (ECH) and current drive system is one of the main plasma heating systems for ITER. It uses high-power microwave beams with the power deposition location steerable across the plasma cross section. Microwave power is conveyed via transmission lines (TLs) that run from the gyrotrons in the radio frequency building through the assembly hall and tokamak building to the ECH launchers within the tokamak vacuum vessel. The ECH system includes a vast array of interconnected TL waveguides, in-line components, and support structures.
Finite element (FE) modeling provides an essential means of simulating the system, applying loads and determining deflections, rotations, forces, moments, and stresses in order to evaluate various structural and microwave transmission performance metrics. A representative FE model of the overall ECH TL system is developed in ANSYS®. This top-level model defines the centerline of the waveguide system. Waveguide segments are represented by line elements (beams and pipes) with equivalent section properties, and support structures are represented by boundary conditions. A systematic approach is used to model each ECH component with lumped masses and structurally equivalent stiffness matrices or ANSYS superelements.
The top-level TL FE model is used to evaluate the various loads (thermal, vacuum, seismic, etc.) and operating scenarios. The top-level model directly calculates stresses in the straight aluminum waveguide segments. The model provides the forces and moments acting on the in-line components for detailed submodel assessments. Displacement results from the top-level analysis feed into a separate microwave performance model to help determine operational efficiency. All TL performance and thermal-structural requirements are met, as specified by the applicable codes and standards, and successfully documented in numerous technical reports and demonstrated at the final design review.