ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Aravind Shanmugasundaram, Kevin Freudenberg, Michael Kaufman, Robert L. Myatt, Kristine B. Cochran
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 582-593
Technical Paper | doi.org/10.1080/15361055.2021.1935598
Articles are hosted by Taylor and Francis Online.
The electron cyclotron heating (ECH) and current drive system is one of the main plasma heating systems for ITER. It uses high-power microwave beams with the power deposition location steerable across the plasma cross section. Microwave power is conveyed via transmission lines (TLs) that run from the gyrotrons in the radio frequency building through the assembly hall and tokamak building to the ECH launchers within the tokamak vacuum vessel. The ECH system includes a vast array of interconnected TL waveguides, in-line components, and support structures.
Finite element (FE) modeling provides an essential means of simulating the system, applying loads and determining deflections, rotations, forces, moments, and stresses in order to evaluate various structural and microwave transmission performance metrics. A representative FE model of the overall ECH TL system is developed in ANSYS®. This top-level model defines the centerline of the waveguide system. Waveguide segments are represented by line elements (beams and pipes) with equivalent section properties, and support structures are represented by boundary conditions. A systematic approach is used to model each ECH component with lumped masses and structurally equivalent stiffness matrices or ANSYS superelements.
The top-level TL FE model is used to evaluate the various loads (thermal, vacuum, seismic, etc.) and operating scenarios. The top-level model directly calculates stresses in the straight aluminum waveguide segments. The model provides the forces and moments acting on the in-line components for detailed submodel assessments. Displacement results from the top-level analysis feed into a separate microwave performance model to help determine operational efficiency. All TL performance and thermal-structural requirements are met, as specified by the applicable codes and standards, and successfully documented in numerous technical reports and demonstrated at the final design review.