ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Peter H. Titus, Charles Kessel
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 557-567
Technical Paper | doi.org/10.1080/15361055.2021.1898303
Articles are hosted by Taylor and Francis Online.
New superconductor types and performance levels are being developed and have enabled consideration of higher-field, smaller-size devices. In this paper, sizing options for the next Fusion Energy System Study (FESS) design study are explored. The 2016/2017 baseline Fusion Nuclear Science Facility (FNSF) used a bucked and wedged solution with a large external case mainly to support out-of-plane loads and allow radial servicing. Use of a larger case to provide inner leg compression may be needed for the higher-field, smaller devices. These structural concepts have been employed in FIRE, IGNITOR, and C-Mod. Each of these concepts will be investigated as candidates for a next machine study. Recommendations will be made as to how these concepts can be incorporated into systems codes.
The iterative design of the poloidal field coil system and the iterative choice of scenario currents are needed to go along with toroidal field (TF) coil support concepts. Concepts that employ a bucked solution require assessment of cancellation of the central solenoid radially outward and the TF radially inward load, and thus affect the sizing of both. Ideally better but simple structural models of the poloidal coils can be built into the scenario development codes to address advanced TF support schemes. Simplified spreadsheet assessments of structural concepts are presented, and these are benchmarked against finite element analyses. Possible options for the FNSF and next machine studies are assessed in terms of achievable fields and space allocation.