ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. E. Kessel, T. Bohm, M. S. Tillack, P. Titus, Y. Zhai
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 519-531
Technical Paper | doi.org/10.1080/15361055.2021.1909988
Articles are hosted by Taylor and Francis Online.
Restraining the size of fusion power plants is considered an important avenue to make them a competitive energy source among other forms of energy production. The most critical contributor to the size of a tokamak is the inboard radial build, composed of multiple components with various functions. This build is the ultimate limit to size reduction. The Fusion Nuclear Science Facility is reviewed and each element of the inboard build is described, showing that the build, including breeding blanket, structural ring, vacuum vessel, low-temperature shield, and toroidal field and central solenoid (CS) coils, contributes 2.9 m of build, with 0.6 m of bore hole inside the CS coil, or 3.5 m to reach the plasma scrape-off layer. This implies that it would be challenging to make a significantly smaller build and simultaneously meet all the engineering requirements.