ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wolfgang Hohenauer, Harald Bolt, Jochen Linke, Werner K. W. M. Malléner
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 18-27
Technical Paper | doi.org/10.13182/FST98-A50
Articles are hosted by Taylor and Francis Online.
To investigate the erosion and redeposition phenomena of fusion-related materials under stationary conditions, actively cooled test limiters were developed for the Tokamak Experiment for Technology Oriented Research (TEXTOR). The test limiters allow experiments under stationary conditions within a plasma pulse length of 10 s. Heat loads of typically 10 MW/m2 are removed by pressurized water; the volume flow is 10 m3/h, the pressure is 15 bar, and the minimum coefficient of heat transfer is nearly 70 000 W/m2K. The limiters were manufactured as low-pressure plasma-spraying thermally sprayed tungsten-coated heat sinks made of the molybdenum alloy TZM. The required properties of the tungsten coating were developed by the use of a statistically based optimization routine. Optimized, actively cooled limiters were successfully tested in Forschungszentrum Jülich's Material Research Ion Beam Test Facility (MARION) with hydrogen beams. Maximum heat loads of up to ~17 MW/m2 were applied without any failure of either the heat sink or the cooling system. The steady state of the surface temperature was measured within 2 s. Analytical and numerical models describing the effects of heat load distribution and spatial temperatures were found to be in excellent agreement with numerical predictions. In an additional experiment, loss of coolant was simulated. Transition boiling was generated, and after repeated heat loads higher than 10 MW/m2, cavitational damage of the heat sink occurred. Concerning the material selection for heat sinks of hypervapotrons and other cooling systems based on enhanced boiling of the cooling liquid, this result might be of special interest.