ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Xiaojun Ma, Qi Wang, Zongwei Wang, Xiangyu Wan
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 446-453
Technical Paper | doi.org/10.1080/15361055.2021.1927624
Articles are hosted by Taylor and Francis Online.
The oxygen concentration in the glow discharge polymer (GDP) capsule is one of the perturbations that most limit implosion quality. In order to investigate the feasibility of the Rutherford backscattering (RBS) technique for characterizing the oxygen concentration in a GDP capsule, the basic principle of RBS and the experimental conditions are introduced first. Then, the irradiation damage effect of incident ions on the GDP film is simulated numerically. The simulated results demonstrate that the GDP films will be damaged by the incident ions, and the vacancy damage dominates in irradiation modification. Finally, some GDP thin films are measured using RBS, and the oxygen concentration and its depth profile are obtained from the measured RBS spectrum. The simulated and experimental results prove that the oxygen concentration of GDP films can be measured precisely using RBS with an uncertainty of about 3.5%.