ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
In Sun Park, In Je Kang, Kyu-Sun Chung
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 429-436
Technical Paper | doi.org/10.1080/15361055.2021.1929759
Articles are hosted by Taylor and Francis Online.
Although plasma-facing components composed of tungsten are less likely to generate dust when compared to other materials, dust generation is still possible during severe transient phenomena in fusion devices. The generation of tungsten dusts was experimentally investigated by exposing tungsten targets to a transient heat flux factor (FHF) simulated by a high-energy pulsed laser so that the rate of dust generation would be analyzed. The rate of dust generation is observed to be increased linearly with respect to FHF: G [mg/min] = C (FEX – F0), where FEX is the experimental value of FHF, F0 is the threshold FHF, and C [mg∙m2∙s1/2/min∙MJ] = 0.0031 ± 0.0002. FHF indicates that the characteristics of dusts such as size and FHF are similar to those observed in several toroidal fusion devices. The threshold of FHF for dust generation was also observed as 41 MJ/m2∙ s1/2, which is similar to that of the international thermonuclear experimental reactor ITER (50 MJ/m2∙ s1/2).