ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Ruihuan Li, Xiaoxiao Cao, Zhixian Su, Dan Sun, Yedi Chen, Wei Feng, Zhihui Zhang, Jijun Zhao
Fusion Science and Technology | Volume 77 | Number 6 | August 2021 | Pages 419-428
Technical Paper | doi.org/10.1080/15361055.2021.1920784
Articles are hosted by Taylor and Francis Online.
Density functional theory calculations were used to study the effects of inherent impurities C, N, and O on the stability and the self-trapping of interstitial He atoms in body-centered-cubic vanadium (V). The most stable site for the He atom nearby C, N, and O is the tetrahedral interstitial site (T-site) rather than the octahedral interstitial site (O-site). The presence of C, N, or O impurities reduces the stability of He in the T-site according to the calculated formation energies. The addition of C and O atoms is beneficial for He self-trapping while the addition of the N atom prevents He self-trapping in vanadium. The stable configurations for Xn-vacancy1 (XnVa1) are C2Va1, N2Va1, and O2Va1. The trapping energies of multiple He atoms captured by XnVa1 are investigated. Our results show that the presence of C, N, and O reduces vacancy trapping of He atoms. Our findings provide further understanding on the behavior of He atoms in vanadium with the influence of C, N, and O.