ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Wei Liu, Qinglong Cui, Sheng Liu, Lizhen Liang, Yuanzhe Zhao, Shihua Song
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 403-408
Technical Note | doi.org/10.1080/15361055.2021.1909990
Articles are hosted by Taylor and Francis Online.
As a promising ion source, the radio frequency (RF)–driven ion source is widely equipped in the neutral beam injector of magnetic-confinement fusion devices. In order to study the characteristics of the RF-driven ion source and plasma generation, a prototype RF negative ion source–based test facility has been developed at the Institute of Plasma Physics, Chinese Academy of Sciences. Many diagnostic tools have been developed for this test facility. The electrostatic sensors are a critical part of the diagnostic methods. Considering the electrostatic sensors to be used in the harsh RF environment, an improved RF compensation circuit [band rejection filter (BRF)] has been developed that effectively reduces RF interference and improves signal acquisition accuracy. The BRF has been successfully verified for frequency response characteristics in a magnitude plot.