ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Gangradey, J. Mishra, S. Mukherjee, P. Nayak, P. Panchal, J. Agarwal, V. Gupta
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 333-339
Technical Paper | doi.org/10.1080/15361055.2021.1904770
Articles are hosted by Taylor and Francis Online.
A cryopump works on the principle of cooling down a metal surface or a surface coated with a porous material, namely, cryopanels, to cryogenic temperature. The gases stick to cryopanels thus lowering pressure and thereby creating a vacuum in an enclosed space. Materials used in the development of cryopumps include metals like copper and steel as structural materials, composite material like G10 for supports, thermal insulation, adhesive to fix sorbent to the metal surface, Vespel as an insulator, and various kinds of coatings on metal surfaces. Thermal properties govern heat load management and thereby the temperature of the cryopanels and hence pumping phenomena. This paper focuses on the experimental investigation of properties like specific heat, thermal diffusivity, thermal conductivity of materials, and their variation with lowering of temperature to cryogenic levels. A study was carried out to quantify the thermal properties of adhesive to fix the sorbent, the metal sheet of the cryopanel coated with activated charcoal granules using the adhesive, materials like G10 and Vespel, and high-emissivity black coating. The thermal conductivity (studied up to −150°C) for different kinds of adhesives was found to be in the range of 0.48 to 0.9 W/m‧K; for Vespel SP21 and G10, it is 0.58 and 0.8 W/m‧K, respectively. The emissivity at room temperature of the sorbent-coated cryopanels was 0.94, and for the high-emissivity black coating, it was in the range of 0.93 to 0.94.