ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
U. Shahid, B. W. N. Fitzpatrick, C. P. Chrobak, J. W. Davis, M. H. A. Piro
Fusion Science and Technology | Volume 77 | Number 4 | May 2021 | Pages 279-288
Technical Paper | doi.org/10.1080/15361055.2021.1883979
Articles are hosted by Taylor and Francis Online.
The erosion and redeposition of first-wall armor materials is a problem in nuclear fusion devices with carbon walls, where deuterium, tritium, and (eroded) carbon present in the plasma are deposited on the walls of the device, trapping the expensive and radiologically hazardous tritium. Thermo-oxidation, in which vessel surfaces are heated and oxygen containing gas is injected, is a possible solution. It results in the production of carbon oxides and tritiated water vapor, which can be pumped out by the vacuum pumps and recycled in a tritium recycling facility. In the present study, thermogravimetric analysis was used to measure the mass loss (or gain) of codeposited specimens from the General Atomics DIII-D National Fusion Facility under thermo-oxidation, in addition to laser thermal desorption spectroscopy. X-ray photo-electron spectroscopy was also used in this work to examine the tile’s surface composition pre and post oxidation. Dust scraped from the specimen was also studied, as this is a surrogate for dust that naturally falls from the tile codeposits and builds up in the tile gaps. One key conclusion is that boron oxides form where boron is present in the codeposit as an impurity, and these oxides dominate the weight-change behavior of the codeposit specimens for long exposures.