ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hiroshige Kumamaru
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 235-249
Technical Paper | doi.org/10.1080/15361055.2021.1874767
Articles are hosted by Taylor and Francis Online.
Numerical calculations have been performed on liquid-metal magnetohydrodynamic flows through a rectangular channel in the magnetic field inlet region and magnetic field outlet region. The conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been carried out for Hartmann (Ha) numbers up to the order of 10 000 and a rectangular channel with electrically conducting channel walls. Attention is focused on pressure drops along the flow channel in the magnetic field inlet region and outlet region. The loss coefficients ζ can be represented by for both the magnetic field inlet region and outlet region, where k is a coefficient, and Ha, Re, and β are the Hartmann number, the Reynolds number, and the channel aspect ratio, respectively. The coefficient k depends on the gradient of applied magnetic field in the magnetic field inlet region and outlet region. However, the coefficient k does not change with the Ha number, the Re number, the wall conductivity number, and the aspect ratio very much.