ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hiroshige Kumamaru
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 235-249
Technical Paper | doi.org/10.1080/15361055.2021.1874767
Articles are hosted by Taylor and Francis Online.
Numerical calculations have been performed on liquid-metal magnetohydrodynamic flows through a rectangular channel in the magnetic field inlet region and magnetic field outlet region. The conservation equations of fluid mass and fluid momentum and the Poisson equation for electrical potential have been solved numerically. The numerical calculations have been carried out for Hartmann (Ha) numbers up to the order of 10 000 and a rectangular channel with electrically conducting channel walls. Attention is focused on pressure drops along the flow channel in the magnetic field inlet region and outlet region. The loss coefficients ζ can be represented by for both the magnetic field inlet region and outlet region, where k is a coefficient, and Ha, Re, and β are the Hartmann number, the Reynolds number, and the channel aspect ratio, respectively. The coefficient k depends on the gradient of applied magnetic field in the magnetic field inlet region and outlet region. However, the coefficient k does not change with the Ha number, the Re number, the wall conductivity number, and the aspect ratio very much.