ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Cody S. Wiggins, Arturo Cabral, Lane B. Carasik
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 206-219
Technical Paper | doi.org/10.1080/15361055.2021.1872273
Articles are hosted by Taylor and Francis Online.
Twisted tape inserts are commonly used for heat transfer enhancement in fusion applications. Although these devices have been extensively studied, existing correlations relating friction factor to Reynolds number and system geometry are applicable only for tight-fitting inserts and cannot account for system roughness and fouling. In this work, we examine pressure losses in twisted tapes of various twist ratios using both a typical twisted tape correlation and a newer formulation that incorporates conventional channel flow correlations. We study flows down to a Reynolds number of 4000 and find that the channel flow treatment predicts experimental outcomes well for turbulent conditions, like those expected in the ITER divertor. For calculations at low Reynolds numbers (expected during start-up and show-down of the divertor), we propose that channel flow correlations be merged with twisted tape correlations. This new, merged correlation is seen to be applicable across all Reynolds numbers observed, although it predicts small divergences among tape pitches at low Reynolds numbers that are not clearly reflected in our experimental data. Experimental and legacy data show that conventional channel flow friction factor correlations can be used under this formulation for pressure drop predictions at Reynolds number above 15 000. We suggest the use of this twisting channel treatment for loose-fitting inserts and systems in which fouling and roughness may be of concern, allowing existing straight channel models to be used for twisted tape pressure drop calculations.