ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
P. J. Foster, Z. J. Trotter, S. A. Schaufler, J. L. Clark, G. C. Staack, J. E. Klein
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 195-198
Technical Paper | doi.org/10.1080/15361055.2020.1860418
Articles are hosted by Taylor and Francis Online.
Savannah River Tritium Enterprise has used LaNi4.25Al0.75 (LANA75) hydride beds to store hydrogen isotopes for over two decades. A benefit of using LANA75 is that the 3He generated from tritium decay is retained in the hydride material, allowing the hydride beds to deliver high-purity product gas. A disadvantage is that the 3He accumulates in the LANA75 material over time, which forms a heel that cannot be removed under normal operating conditions. The heel traps hydrogen in the bed, slowly reducing the operational capacity of the bed as the heel grows. Eventually, the 3He begins to release from the material, preventing the delivery of high-purity product. The hydride beds are replaced when (1) operational capacity is reduced such that it is impactive to routine operations, and/or (2) product purity is not maintained due to 3He release.
Several beds were operated beyond their design life. One of these beds was selected to undergo heating beyond its normal operating temperature to evaluate the possibility of removing a portion of the hydrogen and helium heel to improve bed function until a replacement could take place. This bake-out removed a portion of the hydrogen and helium heel, and preliminary data indicate that bake-outs may partially regenerate the beds. The bed’s performance will continue to be monitored, and additional bake-outs will likely be performed. Performing bake-outs results in increasing the recovery of 3He, more efficient end-of-life activities (such as isotopic exchange), and extension of the useful service life of the bed.