ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
P. J. Foster, Z. J. Trotter, S. A. Schaufler, J. L. Clark, G. C. Staack, J. E. Klein
Fusion Science and Technology | Volume 77 | Number 3 | April 2021 | Pages 195-198
Technical Paper | doi.org/10.1080/15361055.2020.1860418
Articles are hosted by Taylor and Francis Online.
Savannah River Tritium Enterprise has used LaNi4.25Al0.75 (LANA75) hydride beds to store hydrogen isotopes for over two decades. A benefit of using LANA75 is that the 3He generated from tritium decay is retained in the hydride material, allowing the hydride beds to deliver high-purity product gas. A disadvantage is that the 3He accumulates in the LANA75 material over time, which forms a heel that cannot be removed under normal operating conditions. The heel traps hydrogen in the bed, slowly reducing the operational capacity of the bed as the heel grows. Eventually, the 3He begins to release from the material, preventing the delivery of high-purity product. The hydride beds are replaced when (1) operational capacity is reduced such that it is impactive to routine operations, and/or (2) product purity is not maintained due to 3He release.
Several beds were operated beyond their design life. One of these beds was selected to undergo heating beyond its normal operating temperature to evaluate the possibility of removing a portion of the hydrogen and helium heel to improve bed function until a replacement could take place. This bake-out removed a portion of the hydrogen and helium heel, and preliminary data indicate that bake-outs may partially regenerate the beds. The bed’s performance will continue to be monitored, and additional bake-outs will likely be performed. Performing bake-outs results in increasing the recovery of 3He, more efficient end-of-life activities (such as isotopic exchange), and extension of the useful service life of the bed.