ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
G. M. Wallace, T. Bohm, C. E. Kessel
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 159-171
Technical Paper | doi.org/10.1080/15361055.2020.1858672
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is a proposed tokamak reactor with the mission to investigate operation of a fusion reactor in a nuclear environment. The high neutron fluence component of the FNSF mission requires steady-state operation for extremely long pulses (months) at full power. Plasma sustainment and current drive will be critical components of a successful FNSF. COMSOL Multiphysics® software is used for combined radiofrequency (RF) and thermal simulations of the lower hybrid current drive antenna system. These simulations consider the resistive RF losses in the antenna including realistic surface roughness and a range of potential materials. The thermal analysis adds volumetric nuclear heating, plasma heat flux on leading edges, and electromagnetic radiation from the plasma to the RF heating calculated by COMSOL. Additional neutronics calculations have been performed to determine the impact of these antenna designs on activated waste disposal for the materials considered. The simulations show that it is technically feasible to implement a fully active multijunction (FAM) rather than a passive-active multijunction (PAM) style of antenna if the septum between adjacent waveguides is sufficiently wide and the thermal conductivity of the structural material is sufficiently high. The FAM has the benefit of higher achievable power density with respect to the PAM, which results in a more compact antenna with potentially lower impact on neutron shielding and tritium breeding. These considerations point to tungsten rather than steel as the preferred structural material in constructing the antenna.