ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
G. M. Wallace, T. Bohm, C. E. Kessel
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 159-171
Technical Paper | doi.org/10.1080/15361055.2020.1858672
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is a proposed tokamak reactor with the mission to investigate operation of a fusion reactor in a nuclear environment. The high neutron fluence component of the FNSF mission requires steady-state operation for extremely long pulses (months) at full power. Plasma sustainment and current drive will be critical components of a successful FNSF. COMSOL Multiphysics® software is used for combined radiofrequency (RF) and thermal simulations of the lower hybrid current drive antenna system. These simulations consider the resistive RF losses in the antenna including realistic surface roughness and a range of potential materials. The thermal analysis adds volumetric nuclear heating, plasma heat flux on leading edges, and electromagnetic radiation from the plasma to the RF heating calculated by COMSOL. Additional neutronics calculations have been performed to determine the impact of these antenna designs on activated waste disposal for the materials considered. The simulations show that it is technically feasible to implement a fully active multijunction (FAM) rather than a passive-active multijunction (PAM) style of antenna if the septum between adjacent waveguides is sufficiently wide and the thermal conductivity of the structural material is sufficiently high. The FAM has the benefit of higher achievable power density with respect to the PAM, which results in a more compact antenna with potentially lower impact on neutron shielding and tritium breeding. These considerations point to tungsten rather than steel as the preferred structural material in constructing the antenna.