ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Siriano, A. Tassone, G. Caruso
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 144-158
Technical Paper | doi.org/10.1080/15361055.2020.1858671
Articles are hosted by Taylor and Francis Online.
Liquid metals offer unique properties and their use in a nuclear fusion reactor, both as confined flows and free-surface flow, is widely studied in the fusion community. The interaction between this conductive fluid and the tokamak magnetic fields leads to magnetohydrodynamic (MHD) phenomena that influence the flow features. To properly design components that employ liquid metals, it is necessary to accurately predict these features, and although the efforts have been made in development, a mature code specifically customized to simulate MHD flows is still unavailable. In this work, the general purpose computational fluid dynamics code ANSYS CFX 18.2 is validated for MHD free-surface thin-film flow with insulated walls up to and for several values of the characteristic width/thickness ratio, comparing the results with the theoretical relation available in the literature. For all the cases considered, the maximum integral error is found to be below 10%. Successively, the validated code is used to investigate the MHD flow in a chute with a characteristic film ratio equal to 0.1 and for . Uniform and nonuniform wall electrical conductivity cases are considered with the latter modeled by placing on the side walls and on the back wall localized regions with different conductivity. The electrical conductivity of the back wall is found to have a negligible effect on the global flow when the lateral wall is insulated, similarly to what is observed for the analogous bounded flow. Contrariwise, an electrically conductive lateral wall is found to enhance the free-surface jet and to modify the Hartmann layer structure.