ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bo Zeng, Zijia Zhao, Zhong Chen, Dongmei Pan, Zhongliang Lv, Yanyun Ma
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 88-97
Technical Paper | doi.org/10.1080/15361055.2020.1850158
Articles are hosted by Taylor and Francis Online.
Fusion power, which generates electricity from the heat of fusion reactions, has the potential to solve the future energy crisis; hence, methods have been developed to study fusion reactions in a fusion reactor. For neutronic analyses of a fusion reactor, the reaction rate should be precisely calculated. The traditional calculation method has some defects. First, the deuterium-tritium fusion reaction cross-section data used are of the semiclassical model described by Gamow theory, which provides relatively accurate cross sections at energies below several hundreds of kilo-electron-volts in a center-of-mass frame. However, when energies increase, the data may be inaccurate. The ENDF/B-VI database provides accurate energies below 30 MeV. Since tokamak research always aims to raise the temperature inside, the ENDF/B-VI database may be more accurate at high temperatures and fit the research better. Second, adjacent plasmas with different temperatures and densities may influence each other and finally influence the reaction rate, which is not taken into account in the traditional calculation method. In this work, a numerical algorithm based on the ENDF/B-VI database employs both the Monte Carlo method and the discrete ordinates (SN) method, which is used to simulate the transportation process to obtain more accurate reaction rate results. Parameters of the European demonstration fusion power plant (DEMO) A-mode are used to calculate the reaction rate by both the traditional method and the new algorithm. The differences of the results are shown, and the total reaction rate of the new algorithm is 4.23% higher than that of the traditional method.