ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Bo Zeng, Zijia Zhao, Zhong Chen, Dongmei Pan, Zhongliang Lv, Yanyun Ma
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 88-97
Technical Paper | doi.org/10.1080/15361055.2020.1850158
Articles are hosted by Taylor and Francis Online.
Fusion power, which generates electricity from the heat of fusion reactions, has the potential to solve the future energy crisis; hence, methods have been developed to study fusion reactions in a fusion reactor. For neutronic analyses of a fusion reactor, the reaction rate should be precisely calculated. The traditional calculation method has some defects. First, the deuterium-tritium fusion reaction cross-section data used are of the semiclassical model described by Gamow theory, which provides relatively accurate cross sections at energies below several hundreds of kilo-electron-volts in a center-of-mass frame. However, when energies increase, the data may be inaccurate. The ENDF/B-VI database provides accurate energies below 30 MeV. Since tokamak research always aims to raise the temperature inside, the ENDF/B-VI database may be more accurate at high temperatures and fit the research better. Second, adjacent plasmas with different temperatures and densities may influence each other and finally influence the reaction rate, which is not taken into account in the traditional calculation method. In this work, a numerical algorithm based on the ENDF/B-VI database employs both the Monte Carlo method and the discrete ordinates (SN) method, which is used to simulate the transportation process to obtain more accurate reaction rate results. Parameters of the European demonstration fusion power plant (DEMO) A-mode are used to calculate the reaction rate by both the traditional method and the new algorithm. The differences of the results are shown, and the total reaction rate of the new algorithm is 4.23% higher than that of the traditional method.