ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Bo Zeng, Zijia Zhao, Zhong Chen, Dongmei Pan, Zhongliang Lv, Yanyun Ma
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 88-97
Technical Paper | doi.org/10.1080/15361055.2020.1850158
Articles are hosted by Taylor and Francis Online.
Fusion power, which generates electricity from the heat of fusion reactions, has the potential to solve the future energy crisis; hence, methods have been developed to study fusion reactions in a fusion reactor. For neutronic analyses of a fusion reactor, the reaction rate should be precisely calculated. The traditional calculation method has some defects. First, the deuterium-tritium fusion reaction cross-section data used are of the semiclassical model described by Gamow theory, which provides relatively accurate cross sections at energies below several hundreds of kilo-electron-volts in a center-of-mass frame. However, when energies increase, the data may be inaccurate. The ENDF/B-VI database provides accurate energies below 30 MeV. Since tokamak research always aims to raise the temperature inside, the ENDF/B-VI database may be more accurate at high temperatures and fit the research better. Second, adjacent plasmas with different temperatures and densities may influence each other and finally influence the reaction rate, which is not taken into account in the traditional calculation method. In this work, a numerical algorithm based on the ENDF/B-VI database employs both the Monte Carlo method and the discrete ordinates (SN) method, which is used to simulate the transportation process to obtain more accurate reaction rate results. Parameters of the European demonstration fusion power plant (DEMO) A-mode are used to calculate the reaction rate by both the traditional method and the new algorithm. The differences of the results are shown, and the total reaction rate of the new algorithm is 4.23% higher than that of the traditional method.