ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Quanwen Wu, Zhenhua Zheng, Jinchun Bao, Wenhua Luo, Daqiao Meng, Zhiyong Huang
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 81-87
Technical Paper | doi.org/10.1080/15361055.2020.1850157
Articles are hosted by Taylor and Francis Online.
In nuclear fusion reactor facilities, the multi-confinement system and the air detritiation system (ADS) are very important to prevent tritium leaking to the environment. A high-performance tritium oxidation catalyst is strongly required in the ADS. In this study, the air resistance and catalytic performance of honeycomb detritiation catalysts are investigated. Then, the honeycomb catalysts are applied in a glove-box detritiation system as well as in an ADS, and the detritiation performance is tested with tritium. Honeycomb catalysts have a much lower air resistance and an excellent scale-up effect due to the behavior of laminar flow. Thus, the honeycomb catalyst increases the reaction space velocity by nearly 100 times without decreasing the conversion rate of H2. Even at an extremely low tritium concentration, the honeycomb catalyst transforms tritium over 95% into tritiated water. In short, Pt-loaded honeycomb catalysts have a huge advantage in and broad potential for air detritiation.