ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Mazhyn Skakov, Gainiya Zhanbolatova, Arman Miniyazov, Timur Tulenbergenov, Igor Sokolov, Yerzhan Sapatayev, Yernat Kozhakhmetov, Olga Bukina
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 57-66
Technical Paper | doi.org/10.1080/15361055.2020.1843885
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a study on impact of high-power heat load and tungsten (W) surface carbidization on its structural-phase composition and physical-mechanical properties. In this regard, carbidization of a W surface was carried out by means of beam-plasma discharge in a simulation machine with plasma-beam installation. Certain data were obtained regarding temperature in control points of studied samples and temperature distribution throughout the monoblock element, made as a rectangle with an orifice for a cooling path, placed in a fusion reactor divertor. The paper demonstrates that changes in heat load power have an impact on microhardness, roughness, atomization of the carbidized W surface, and phase formation processes. It was established that a heat load q = 10 MW/m2 has very little effect on the elemental composition of the surface and structural-phase composition of W samples with a carbidized layer. Growth of thermal load up to q = 20 MW/m2 leads to a noticeable transformation of tungsten monocarbide (WC) into tungsten semicarbide (W2C) and cracking of the W sample surface.