ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. E. Gebhart, L. R. Baylor, S. J. Meitner
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 33-41
Technical Paper | doi.org/10.1080/15361055.2020.1842682
Articles are hosted by Taylor and Francis Online.
Shattered pellet injector systems have been installed on DIII-D, JET, and KSTAR and used to experimentally determine the effectiveness of the shattered pellet injection (SPI) process in mitigating the deleterious effects of a tokamak plasma disruption. Pellets are fired, and before entering the plasma, strike a bent tube known as a shatter tube causing the pellet to shatter. The process of pellet fragmentation is a chaotic process that can be described in terms of fragment size distribution through a statistical model that incorporates the effects of the pellet material and impact characteristics. In addition to the fragment size distribution, the shatter plume has other characteristics of interest, such as a fragment velocity distribution and temporal mass evolution. The fragment velocity distribution is important because it is needed to accurately model the spread and location of the ablation and the deposition of impurities in the plasma over time. The temporal mass evolution is necessary to determine the time-resolved delivery of mass to the plasma.
Due to installation constraints, the shatter tube currently installed on JET has a unique geometry with a modest S-bend followed by a 20-deg bend at the end of the tube. The DIII-D and KSTAR shatter tube design is a simple tube bent through an angle of 20 deg followed by a straight section. The resulting shatter sprays from the JET shatter tube and a 20-deg miter bend shatter tube were experimentally characterized for various pellet materials and speeds. Laboratory testing of these shatter tubes allows for the use of fast cameras to capture the fragment spray traveling through a large vacuum chamber. These high-speed videos of the shatter plumes allow the fragment size distribution, temporal mass evolution, and velocity distribution of the fragments within the plume to be determined. This paper presents a comparison of the unique geometry of the JET shatter tube to the miter bend geometries used for shattering and some insight into the variables that may be adjusted to produce the optimal shatter spray. The impact of entrained propellant gas on the resulting shatter spray was examined during testing.