ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. J. J. Whitehorne, C. Muirhead, S. N. Thomson, H. Li, R. Carson, H. Boniface, S. Suppiah
Fusion Science and Technology | Volume 77 | Number 1 | January 2021 | Pages 26-32
Technical Paper | doi.org/10.1080/15361055.2020.1842681
Articles are hosted by Taylor and Francis Online.
Electrolysis cells are required to drive the combined electrolysis and catalytic exchange process used in heavy water upgrading and water detritiation.
Past projects have used very robust alkaline electrolyte technology for the electrolysis cells, though recently there has been a move toward proton exchange membrane (PEM) technology. In PEM electrolysis a solid polymer electrolyte (SPE) acts as the proton conductor, separator of product gases, and insulator between electrodes.
The long-term effects of highly tritiated water on these SPE materials are not fully understood. At Canadian Nuclear Laboratories (CNL), an exposure study has been undertaken wherein various commercial and proprietary SPE materials were exposed to very highly tritiated water (~1000 Ci/kg, 37 TBq/kg). Exposures were done at a typical cell operating temperature (60°C) for periods that might be expected for commercial operations.
Following exposure, some samples lost sufficient integrity that they could not undergo post-exposure testing. In order to test the remaining materials’ electrolytic performance and physical properties in a nonactive laboratory, a process of decontamination that would result in no further membrane degradation needed to be developed. The successful reduction in tritium content of the samples following decontamination was verified using chemical digestion and combustion analysis. All types of commercial membranes were found to lose significant ion exchange capacity, to show reduced water absorption, and to show reduced strain before failure. Tensile testing showed almost complete degradation even at low doses. In this paper, commercial membrane data are compared with data from CNL’s tritium-compatible membranes.