ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chikara Konno, Fujio Maekawa, Yukio Oyama, Yujiro Ikeda, Masayuki Wada, Hiroshi Maekawa
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 6-17
Technical Paper | doi.org/10.13182/FST98-A49
Articles are hosted by Taylor and Francis Online.
An analysis of the bulk-shielding experiment on Type 316 stainless steel (SS316) for deuterium-tritium neutrons was performed at the Japan Atomic Energy Research Institute Fusion Neutronics Source to validate the nuclear data and transport codes used in the shielding design of the International Thermonuclear Experimental Reactor (ITER). The MCNP-4A and DORT3.1 codes with contemporary nuclear data libraries based on the FENDL/E-1.1 and JENDL Fusion File were used for the analyses. The MCNP calculations with the FENDL/E-1.1 and JENDL Fusion File agree within 30% with the measured data. The DORT calculations with the FENDL/E-1.1 and JENDL Fusion File with an energy structure of 175 neutrons and 42 gamma rays and a self-shielding correction represent the measurements with almost the same accuracy as the MCNP calculations. It is concluded that the uncertainty of the shielding calculation for the bulk-shielding configuration of MCNP-4A and DORT3.1 with the FENDL/E-1.1 and JENDL Fusion File on a 900-mm-thick SS316 shield is within 30%.