ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Vít Škvára, Václav Šmídl, Tomáš Pevný, Jakub Seidl, Aleš Havránek, David Tskhakaya
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 962-971
Technical Paper | doi.org/10.1080/15361055.2020.1820805
Articles are hosted by Taylor and Francis Online.
Chirping Alfvén eigenmodes were observed at the COMPASS tokamak. They are believed to be driven by runaway electrons (REs), and as such, they provide a unique opportunity to study the physics of nonlinear interaction between REs and electromagnetic instabilities, including important topics of RE mitigation and losses. On COMPASS, they can be detected from spectrograms of certain magnetic probes. So far, their detection has required much manual effort since they occur rarely. We strive to automate this process using machine learning techniques based on generative neural networks. We present two different models that are trained using a smaller, manually labeled database and a larger unlabeled database from COMPASS experiments. In a number of experiments, we demonstrate that our approach is a viable option for automated detection of rare instabilities in tokamak plasma.