ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Gonzalo Farias, Ernesto Fabregas, Sebastián Dormido-Canto, Jesús Vega, Sebastián Vergara
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 925-932
Technical Paper | doi.org/10.1080/15361055.2020.1820804
Articles are hosted by Taylor and Francis Online.
Anomaly detection addresses the problem of finding unexpected values in data sets. Often, these anomalies, also known as outliers, discordant values, or exceptions, describe patterns in the behavior of the data. Anomaly detection is important because it frequently involves significant and critical information in many application domains. In the case of nuclear fusion, there is a wide variety of anomalies that could be related to plasma behaviors, such as disruptions or low-high (L-H) transitions. In this context, there are known and unknown anomalies, where unknown anomalies represent the largest proportion of the total that can be found in nuclear fusion. This paper presents a study of the application of deep learning and architecture called Autoencoder to detect anomalies predicting (encode-decode) in a discharge.